MINISTRY OF EDUCATION, HERITAGE AND ARTS

YEAR 13 CHEMISTRY

REVISION WORKSHEET 5

Write the answers to the following questions in your exercise/activity books.

	Stran	nd 2: Investigating Matter Sub-strand: States of Matter	
	1.	Name the laws and principles which forms the basis of the ideal gas law .	(3 marks)
4	2.	A sample of oxygen gas was collected over water at 20 °C and 101.5 kPa and was found to occupy a volume of 25 mL.	
		Calculate the mass of oxygen gas collected.	(3 marks)
		(SVP of water at 20 °C = 2 kPa, R = 8.314 J K ⁻¹ mol ⁻¹ , M_{0_2} = 32 g mol ⁻¹)	
()	3.	A marathon runner made a drink by dissolving 50 g of glucose ($C_6H_{12}O_6$) in 500 mL of water.	
		Calculate the mole fraction of glucose in the solution.	
		$(M_{\rm glucose} = 180 \text{ g mol}^{-1}, \qquad M_{\rm H_2O} = 18 \text{ g mol}^{-1})$	(3 marks)
4	4.	Differentiate between molality and molarity .	(2 marks)
	5.	A solution was made by dissolving 5 g of calcium chloride in 25 mL of water.	
		Calculate the molarity of the solution. $(M_{CaCl_2} = 111 \text{ g mol}^{-1})$	(2 marks)
(6.	State the definitions of the following:	
		(i) Weight percent	(1 mark)
		(ii) Volume percent	(1 mark)
,	7.	A diluted ethanol solution was made by adding 50 mL of ethanol in enough water to make a 250 mL ethanol solution.	
		Calculate the volume percent of ethanol in the diluted solution.	(2 marks)

The End